Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Selvi Karaca, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Ersin Orhan ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, 'Department of Chemistry, Faculty of Arts and Sciences, Karaelmas University, 67100 Zonguldak, Turkey, and ${ }^{\text {d }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.100$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Benzyl-3-(2-phenethyl)benzimidazolium bromide monohydrate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized from 1-benzylbenzimidazole and 2-bromoethylbenzene in dimethylformamide. The dihedral angle between the two phenyl rings is $70.6(1)^{\circ}$. These phenyl rings make dihedral angles of $52.99(9)$ and $83.03(8)^{\circ}$ with the benzimidazole ring system. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bond interactions.

Comment

Considerable attention has been given to the synthesis of benzimidazole derivatives because of their therapeutic properties in many diseases. For example, omeprazole, which contains benzimidazole and pyridine, is the best selling antiulcer drug nowadays (Carlsson et al., 2002). The aforementioned compounds show versatile pharmacological activities, such as antibacterial, antifungal, antihelmintic, anti-allergic, antineoplastic, local analgesic, antihistaminic, vasodilative, hypotensive and spasmolytic activities (Easmon et al., 2001; Güneş \& Coşar, 1992; Küçükbay et al., 2004). We have also synthesized and investigated the crystal structures of some benzimidazole derivatives (Akkurt et al., 2004, 2005; Türktekin et al., 2004; Karaca et al., 2005). The object of the present study was to elucidate the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles (Table 1) are comparable with those of similar structures previously reported (Öztürk Yıldırım et al., 2005, Akkurt et al., 2004; Karaca et al., 2005). The benzimidazole ring system is essentially planar, with a maximum deviation of 0.023 (2) \AA for atom N1. The two phenyl rings, C9-C14 and C17-C22, make dihedral angles of 83.03 (8) and $52.99(9)^{\circ}$, respectively, with the benzimidazole ring system.

Received 30 June 2005
Accepted 6 July 2005
Online 9 July 2005

Figure 1
View of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view of the crystal packing along the a axis. Dashed lines indicate $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

The dihedral angle between these phenyl rings is $70.6(1)^{\circ}$. The crystal packing (Fig. 2) is stabilized by intermolecular C$\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 2).

Experimental

1-Benzylbenzimidazole ($2.0 \mathrm{~g}, 9.62 \mathrm{mmol}$) and 2-bromoethylbenzene $(1.3 \mathrm{ml}, 9.62 \mathrm{mmol})$ in dimethylformamide ($\mathrm{DMF}, 3 \mathrm{ml}$) were heated for 3 h . All the volatiles were then removed under vacuum. The title compound was crystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ ($3: 1(\mathrm{v} / \mathrm{v})$ (yield: 3.28 g , 83%; m.p. $435-436 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.29\left(t, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$, 2 H), $4.84\left(t, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}\right), 5.77\left(s, \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}\right), 7.22-8.13$ (m, $\mathrm{Ar}-\mathrm{H}, 14 \mathrm{H}), 9.99\left(s\right.$, benzimidazole- $\left.\mathrm{C}^{2}-\mathrm{H}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (DMSOd_{6}): $\delta 34.77,48.50,50.14,114.32,127.12,127.17,128.51,129.06,129.26$, $129.41,131.06,131.60,134.42,137.27,142.79$. Analysis calculated for
$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C} 64.23, \mathrm{H} 5.59, \mathrm{~N} 6.81 \%$; found: C 63.88, H 5.69, N 6.38%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
Z=2
$$

$M_{r}=410.32$
Triclinic, $P \overline{1}$
$a=9.2334$ (9) \AA
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10373 reflections
$b=9.3684(10) \AA$
$c=11.3028$ (12) A
$\theta=2.2-26.8^{\circ}$
$\alpha=99.895$ (8$)^{\circ}$
$\mu=2.16 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$\beta=90.607(8)^{\circ}$
$\gamma=95.637$ (8) ${ }^{\circ}$
Prism, colourless $0.66 \times 0.47 \times 0.26 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.330, T_{\text {max }}=0.604$
10373 measured reflections
3811 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=26.7^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
4023 independent reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.09$
4023 reflections
244 parameters
H atoms treated by a mixture of independent and constrained refinement
$l=-13 \rightarrow 14$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.393(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.334(3)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.471(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.473(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.331(3)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.389(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$108.76(17)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$131.49(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 15$	$124.55(17)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$131.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15$	$126.54(17)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$106.60(16)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 8$	$126.43(16)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$109.83(17)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$124.91(17)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$111.57(16)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7$	$108.63(17)$	$\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 16$	$111.07(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$106.16(17)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 W \cdots \mathrm{Br} 1$	$0.84(4)$	$2.54(4)$	$3.373(2)$	$170(4)$
$\mathrm{O} 1-\mathrm{H} 2 W \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.76(5)$	$2.61(5)$	$3.356(2)$	$168(5)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$	0.93	2.82	$3.7431(19)$	175
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.58	$3.458(3)$	151

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $-x,-y+1,-z+2$.

The water molecule H atoms were found in difference Fourier maps and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$, and with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom). The highest residual peak and the deepest hole are located 0.89 and $0.90 \AA$, respectively, from atom Br1.

organic papers

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). HK and EO thank Ínönü University Scientific Research Unit (BAPB-2005/36) for financial support for this study.

References

Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2005). Acta Cryst. E61, m41-m43.

Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o219-o221.
Carlsson, E., Lindberg, P. \& Unge, S. (2002). Chem. Br. 5, 42-45.
Easmon, J., Puerstinger, G., Roth, T., Fiebig, H. H., Jenny, M., Jaeger, W., Heinisch, G. \& Hofmann, J. (2001). Int. J. Cancer, 94, 89-96.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Güneş, H. S. \& Coşar, G. (1992). Arzneim. Forsch. (Drug Res.), 42, 10451048.

Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2128-o2130.
Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. \& Kazaz, C. (2004). Arzneim. Forsch. (Drug Res.), 54, 64-68.
Öztürk Yıldırım, S., Akkurt, M., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2038-o2039.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o817-o819.

